Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Zhong-Lu You,^{a,b} Zuo-Mao Wang,^c Ying Zou^a and Hai-Liang Zhu^{a,c}*

^aDepartment of Chemistry, Fuyang Normal College, Fuyang Anhui 236041, People's Republic of China, ^bDepartment of Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China, and ^cDepartment of Chemistry, Qufu Normal University, Qufu 273165, People's Republic of China

Correspondence e-mail: hailiang_zhu@163.com

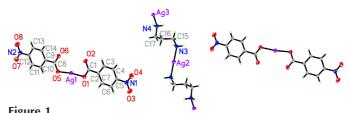
Key indicators

Single-crystal X-ray study $T=298~\mathrm{K}$ Mean $\sigma(\mathrm{C-C})=0.007~\mathrm{\mathring{A}}$ R factor = 0.044 wR factor = 0.118 Data-to-parameter ratio = 12.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

catena-Poly[[silver(I)- μ -propane-1,3-diamine- $\kappa^2 N:N'$] bis(4-nitrobenzoato- κO)argentate(I)]

In the title compound, $\{[Ag(C_3H_{10}N_2)][Ag(C_7H_4NO_4)_2]\}_n$, one of three independent Ag^I atoms forms a mononuclear complex with a nearly linear environment, coordinated by two O atoms from two 4-nitrobenzoate anions. The other two Ag atoms lie on inversion centers and are coordinated in a linear configuration by two N atoms from two propane-1,3-diamine ligands, giving zigzag polymeric chains with an $[-Ag-N-C-C-N-]_n$ backbone running along the [011] direction.


Received 16 November 2004 Accepted 26 November 2004 Online 4 December 2004

Comment

Silver(I) complexes with carboxylate anions as counter-ions or ligands are a group of metal compounds which, due to their wide usage in many fields, have been structurally characterized for many years (Nomiya *et al.*, 2000; Kristiansson, 2001). Recently, we have reported a few silver(I)–carboxylate complexes with various amines and imines, all of which were structurally characterized (Zhu *et al.*, 1999, 2000; Zheng *et al.*, 2001; Usman *et al.*, 2003). As an extension of our work on the characterization of silver compounds, the structure of the title compound, (I), is reported here.

$$H_2N$$
 NH_2
 Ag
 NH_2
 Ag
 NH_2
 Ag
 NH_2
 Ag
 NH_2
 Ag
 NH_2
 Ag

The title compound, (I), is a polymeric silver(I) complex (Fig. 1). The smallest repeat unit for the complex contains a propane-1,3-diamine-silver(I) cation segment and a bis(4-nitrobenzoato)silver(I) anion. Atom Ag1 in the anion is in a nearly linear coordination environment and is coordinated by two O atoms from two 4-nitrobenzoate anions. Each 4-nitrobenzoate anion coordinates to the Ag atom through one O

The structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Unlabelled atoms are at the symmetry position -x, 2-y, 2-z.

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

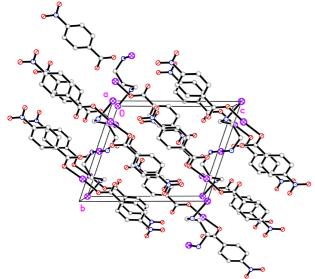


Figure 2 The crystal packing of (I), viewed along the a axis. H atoms have been omitted.

atom of the carboxylate group. The O1-Ag1-O5 angle [172.24 (13)°, Table 1] deviates slightly from the ideal value of 180° , which is probably due to the weak interactions involving atoms O2 and O6 of the 4-nitrobenzoate anion, with an average Ag···O distance of 2.972 (5) Å; these pull Ag^I in towards the direction of atoms O2 and O6. There are intermolecular N-H···O hydrogen bonds (Table 2). Ag2 and Ag3 both lie on inversion centers and are coordinated in a linear configuration by two N atoms from two propane-1,3-diamine ligands, giving zigzag polymeric cation chains with an [-Ag-N-C-C-C-N-]_n backbone running along the [011] direction (Fig. 2). All the Ag-O and Ag-N bond lengths are comparable to the values observed in a similar silver(I) complex (Zhu *et al.*, 2003).

Experimental

Silver 4-nitrobenzoate (0.1 mmol, 27.4 mg) and propane-1,3-diamine (0.1 mmol, 7.4 mg) were dissolved in an aqueous ammonia solution (10 ml, 30%). The mixture was stirred for about 10 min at room temperature to obtain a clear colorless solution. The resulting solution was kept in the dark, and after slow evaporation of the solvent over a period of 8 d, crystals of (I) were isolated, washed three times with water and dried in a vacuum desiccator using anhydrous CaCl₂ (yield 73%). Elemental analysis calculated: C 32.8, H 2.9, N 9.0%; found: C 32.6, H 2.9, N 9.1%.

Crystal data

Z = 2 $D_x = 2.071 \text{ Mg m}^{-3}$
Mo $K\alpha$ radiation
Cell parameters from 3715
reflections
$\theta = 2.3-26.5^{\circ}$
$\mu = 2.02 \text{ mm}^{-1}$
T = 298 (2) K
Block, colorless
$0.32 \times 0.26 \times 0.18 \text{ mm}$

Data collection

Bruker SMART CCD area-detector diffractometer	3493 independent reflections 2999 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.021$
Absorption correction: multi-scan	$\theta_{\rm max} = 25.0^{\circ}$
(SADABS; Sheldrick, 1996)	$h = -11 \rightarrow 10$
$T_{\min} = 0.553, T_{\max} = 0.699$	$k = -11 \rightarrow 11$
5306 measured reflections	$l = -13 \rightarrow 10$

Refinement

Refinement on F^2	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.044$	$w = 1/[\sigma^2(F_o^2) + (0.0841P)^2]$
$wR(F^2) = 0.118$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.07	$(\Delta/\sigma)_{\rm max} < 0.001$
3493 reflections	$\Delta \rho_{\text{max}} = 3.45 \text{ e Å}^{-3}$
283 parameters	$\Delta \rho_{\min} = -1.03 \text{ e Å}^{-3}$

Table 1 Selected geometric parameters (Å, °).

Ag1-O1	2.087 (5)	Ag2-N3	2.151 (5)
Ag1-O5	2.124 (5)	Ag3-N4	2.150 (6)
O1-Ag1-O5 N3 ⁱ -Ag2-N3	172.24 (13) 180 (1)	N4 ⁱⁱ —Ag3—N4	180 (1)

Symmetry codes: (i) -x, 2 - y, 2 - z; (ii) 1 - x, 1 - y, 2 - z.

Table 2 Hydrogen-bonding geometry (Å, °).

$D-H\cdots A$	<i>D</i> -H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	D $ H$ $\cdot \cdot \cdot A$
N4—H4 <i>B</i> ···O6 ⁱⁱ	0.90	2.13	3.008 (7)	167
$N4-H4A\cdots O2^{ii}$ $N3-H3B\cdots O6^{iii}$	0.90 0.90	2.39 2.14	3.203 (9) 3.025 (7)	150 167
$N3-H3A\cdots O2^{iii}$	0.90	2.40	3.204 (8)	149

Symmetry codes: (ii) 1 - x, 1 - y, 2 - z; (iii) x - 1, y, z.

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93–0.97 Å and N—H distances of 0.90 Å, and with $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm C/N})$. The maximum residual density is located 1.86 Å from atom Ag1, while the minimum residual density is 0.91 Å from Ag1.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997a); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997a); molecular graphics: *SHELXTL* (Sheldrick, 1997b); software used to prepare material for publication: *SHELXTL*.

The authors thank the Education Office of Anhui Province, People's Republic of China, for research grant No. 2004kj300zd.

References

Bruker (1998). SMART (Version 5.628) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.

Kristiansson, O. (2001). Inorg. Chem. 40, 5058-5059.

Nomiya, K., Takahashi, S., Noguchi, R., Nemoto, S., Takayama, T. & Oda, M. (2000). *Inorg. Chem.* **39**, 3301–3311.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.

metal-organic papers

- Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Usman, A., Fun, H.-K., Chantrapromma, S., Zhu, H.-L. & Wang, X.-J. (2003). *Acta Cryst.* C59, m97–m99.
- Zheng, S.-L., Tong, M.-L., Zhu, H.-L., Fang, Y. & Chen, X.-M. (2001). J. Chem. Soc. Dalton Trans. pp. 2049–2053.
- Zhu, H.-L., Tong, Y.-X. & Chen, X.-M. (2000). J. Chem. Soc. Dalton Trans. pp. 4182–4186.
- Zhu, H.-L., Tong, Y.-X., Long, L.-S., Tong, M.-L. & Chen, X.-M. (1999). Supramol. *Chem.* **11**, 119–133.
- Zhu, H.-L., Wang, Z.-G., Lin, Y.-S., Zou, Y., Tang, L.-L. & Shao, S.-C. (2003). Acta Cryst. E59, m942–m943.